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Abstract

Dendritic flow architectures are being contemplated for thermal designs that provide high heat transfer densities for

the cooling of electronics. Optimized tree networks maximize the flow access between one point (source, sink) and an

infinity of points (line, area, volume). This paper is a fundamental study of a new class of dendritic flow architectures

for thermal design: trees combined with closed-loop structures, as in the venation of leaves. The loops provide robust-

ness to the design: the network continues to serve its assigned area even if one or more ducts are damaged. The study

documents the achievement of performance and robustness systematically, by starting from the simplest architectures

and proceeding toward the more complex, namely, point-circle networks with one loop size and two loop sizes, and

networks with loops without and with branching levels. It is shown that the use of loops increases the global flow resist-

ance relative to the dendritic design without loops. Damage, or removal of a duct from the network, also leads to an

increase in global flow resistance. These effects become less important as complexity increases, provided that the net-

work is optimized. A damaged peripheral duct induces a smaller penalty than a damaged duct that is situated close

to the center of the network. In summary, optimized complex flow structures are robust. Loops are an attractive design

feature for maintaining a high level of global performance when the structure experiences local damage.

� 2004 Elsevier Ltd. All rights reserved.
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1. Introduction

Tree networks represent a new trend in the optimiza-

tion and miniaturization of heat transfer devices [1–4],

mass exchangers [5,6], chemical reactors [7], and fuel

cells [8]. Tree-shaped architectures promise a more judi-

cious use of the available space: higher densities of heat

and mass transfer and chemical reactions, and a more
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uniform volumetric distribution of transport processes.

The fundamental study of the optimization of tree-

shaped architectures also sheds light on the common de-

sign principles of engineered and natural flow systems.

The tree networks that have been optimized so far are

true trees, that is, networks without loops (networks that

are not ‘‘nets’’). The tree makes a unique connection be-

tween the root and one point in the canopy (the canopy

can be a line, area, or volume). There are as many such

connections as there are points in the canopy. If one of

these paths is interrupted by accident, then one or more

points in the canopy are not served by the network. The

design question then is how to protect such points
ed.
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Nomenclature

D tube diameter, m

L tube length, m

f dimensionless flow resistance

_m mass flow rate, kg m�1

n number of tubes

N number of ports on disc perimeter

R disc radius, m

V tube volume, m3

T temperature, K

Greek Symbols

DP pressure drop, Nm�2

m kinematic viscosity, m2s�1

q fluid density, kgm�3

Subscripts

i rank of tube

min minimum

opt optimum

0 tube touching the center, Fig. 2

1, 2, . . . tube positioned progressively closer to the

perimeter

o disc center

a, b, . . . nodal indexes

Superscript

(^) dimensionless, Eqs. (4) and (5)
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against the possible loss of direct flow from or to the

root.

The solution is put on display in the design of most

botanical tree leaves (e.g., Fig. 1a). As in the constructal

trees [1], the regions that surround the smallest nerves

are served by diffusive flows. The duct flows are concen-

trated in the nerves, which are organized in tree-like

fashion at the larger and more visible scales (e.g., near

the root). The smallest nerves, however, are organized

additionally into closed loops [9]. With such a structure,

the leaf area surrounded by the loop is served by the

peripheral duct flow even in cases where the peripheral

duct is severed (by a worm, for example). This looped

design stands in sharp contrast to the quasi-radial dend-

ritic design of the ginkgo leaf (Fig. 1b), which is the

exception—a living fossil the design of which has not

changed in millions of years. Speaking of fossils, the tree

design with loops at the smallest length scales is a defin-

ing feature of the blood vessels used for temperature

control in the wings of a pterosaur [10], as reproduced

in Fig. 1c.

Tree networks with built-in loops are also employed

in man-made systems, for example, in networks for the

distribution of electricity and water, and the collection

of city waste and rain water. Grids for city traffic can

also be superposed tree networks with loops. If in case

of accident the flow in one link is interrupted, the flow

in neighboring links changes so that the damaged area

of the network continues to perform its function.

In this paper we examine the most fundamental attri-

butes of tree networks with loops at smaller scales. In ex-

change for their increased design resistance (robustness)

in case of accidental damage, are they much less efficient

than the tree-shaped structures without loops? We

examine this issue systematically, optimizing the com-

plete architectures of networks with loops, and compar-
ing their performance with the performance of the

correspondingly optimized tree networks without loops.

We pursue this study in the direction of increasing com-

plexity, from the simplest tree structure in which only

one loop size is present (e.g., Fig. 2b), to structures with

two or more loop sizes.
2. Disc-shaped tree canopies

Some of the simplest tree structures are those that

connect a point with many points arranged on a line.

Such tree structures have been optimized for minimal

global flow resistance [11], as well as for minimal flow

path lengths [12]. The applications that have stimulated

the optimization of trees range from the convection

cooling of packages of electronics [2–4] to urban hydrau-

lics problems such as the distribution of hot or cold

water to users arranged uniformly on an area [13].

One example is the flow connection between a circle

and its center. The users can be approximated by num-

ber of discrete outlets arranged equidistantly. Cases with

six and three outlets are shown in the examples of Figs.

2a and b, where each network has one level of branching

indicated by the dashed circle.

The objective is to minimize the overall pressure drop

across a point-circle flow structure such as Fig. 2b. We

do this by selecting optimally every geometric feature

of the architecture. When the total fluid mass flow rate

( _m) from the center to the circle is specified, the minimi-

zation of the overall pressure drop (DP) is equivalent to
minimizing the global flow resistance (P= _m), pumping
power ( _mDP=q), or rate of entropy generation by fluid
friction ( _mDP=qT ).

The size of the flow system is represented by two glo-

bal parameters, or two �properties� [14]. The external size



Fig. 1. The design of the nerves of the leaf; (a) The common design, showing tree structure at large length scales, and closed loops at

smaller scales; (b) Dendritic design in the ginkgo leaf (Ginkgo biloba); (c) tree and loops design in the blood vascularization of the wing

of the pterosaur Rhamphorhynchus muensteri [10].
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is represented by the external length scale R, which is the

radius of the circle. The internal size is represented by

the volume occupied by all the tubes, V. The geometric

variables that account for the morphing of the point-cir-

cle flow structure are the number of outlets (N), the

number of central tubes (n0), the number of pairing or

bifurcation levels, the duct lengths (e.g., L0 and L1 in

Fig. 2), and the duct diameters (e.g., the diameters D0
and D1 that correspond to the lengths L0 and L1 in

Fig. 2b). Not all these variables represent degrees of

freedom in the design.
3. One loop size

The model selected for the flow through each duct de-

pends on the scale of the flow network. In urban design,
for example, the networks for the distribution and col-

lection of water operate in the turbulent regime. At

much smaller scales, the cooling networks contemplated

for the design of high-density electronics, the flow is

laminar, but ducts may be short and the concentrated

pressure losses due to entrances and junctions may not

be negligible [15–18]. In this section we begin with the

simplest model, which consists of straight tubes with

round cross-sections, and fully-developed laminar flow

in every duct. The Li/Di ratio of each tube is assumed

to be sufficiently large so that the pressure drop associ-

ated with the tube (DPi) is due almost entirely to fluid
friction in the straight section Li. In other words, we ne-

glect the local pressure losses associated with the Y-

shaped pairings or bifurcations. This model is chosen

for simplicity, and to construct a meaningful basis of

comparison with optimized trees without loops [11],



Fig. 2. Arrangement of tubes for flow between the center and a

number of points positioned equidistantly on the circle: (a)

optimized tree structure with one level of pairing, and (b) the

geometric features of a network with loops of one size.

Fig. 3. The minimized global resistance of structures with one

and two loop sizes, relative to the global resistance of radial

designs and trees without loops.
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where the same model was used. According to this

model, the pressure drop along a tube of length Li is

DP i ¼ _mi
128m

p
Li

D4
i

ð1Þ

The radial position of the branching points is indicated

with a dashed circle. The calculation of the overall pres-

sure drop DP = D Poe requires the use of Kirchoff�s law,
according to which we assign one sense (e.g., counter-

clockwise) to reading each loop. For the loop oaebo in

Fig. 2b the pressure drops add up to zero, DPoa
+ DPae + DPeb + DPbo = 0. The minimization of the

overall flow resistance DP= _m requires the use of symme-

try: for example, oe is the axis of symmetry of figure

oaeb, and there are only two tube sizes, D0 (=Doa =

Dob = Doc) and D1 (=Dae = Dbe = Dbf = Dcf = Dcd =

Dad).

In summary, the geometry of Fig. 2b has only three

degrees of freedom (n0, L1/L0, D1/D0) when the number

of loop sizes (or pairing levels) are fixed. The overall

pressure drop (DP = DPoa + DPae) can be expressed as
the dimensionless global flow resistance

f ¼ DP
_m

V 2

8pmR3
ð2Þ

where

f ¼ n0 bL0 þ 1

2

D0

D1

� �4bL1
" # bL0 þ 2

D1

D0

� �2bL1
" #2

ð3Þ

ðbL0; bL1Þ ¼ ðL0; L1Þ=R ð4Þ

The external and internal constraints (R,V) have been

taken into account in the derivation of Eq. (3). Note that

when n0 is fixed, only one of the two lengths bL0 and bL1
can be varied independently. This degree of freedom ac-

counts for the movable radius of the dashed circle in Fig.

2b. The analysis leading to Eq. (3) is the same as the

method presented in Ref. [11] and is not repeated here.

The dimensionless flow resistance f can be minimized

with respect to bL0 and D1/D0. The optimized D1/D0 ratio
is 2�1/3, in agreement with Murray�s law [1]. The mini-

mal-f results are shown as the ‘‘one loop size’’ curve in
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Fig. 3. The abscissa shows the number of outlets on the

rim (N), which in the case of a single loop size is the

same as the number of radial tubes (n0). We found that

the one-loop layout can be optimized when NP 5.

When N is smaller than 5, the optimal tube arrangement

is radial, without loops. The optimized layout of tubes

for N = 5 is shown in Fig. 4a. As N increases, the central

tubes (bL0) become longer, as shown for N = 10 in Fig.
4b. This behavior is summarized in Fig. 5.

The optimization of the radius of bifurcation (bL0) is
the same as the optimization of the angle between the

two bL1 branches that extend beyond the radial duct of
length bL0. The two bL1 ducts and the radial bL0 duct form
a Y-shaped structure the end points of which are fixed.

An earlier study has shown that the angle of the Y con-

figuration can be optimized for minimal global flow
Fig. 4. The optimal layout of tubes with one loop size (N = 5,

10).

Fig. 5. The optimized central tube length for structures with

one loop size.
resistance [19]. The opportunity to optimize the angle

resurfaces here in the optimization of the radial position

of the bifurcation.

Fig. 5 confirms that for structures with N < 5 an opti-

mal bL0 does not exist. The optimization of the one-loop-
size structure of Fig. 2b undergoes a transition from

N = 4 to N = 5. Fig. 3 shows that the use of optimized

loops causes a significant jump in the global fluid resist-

ance: the f value doubles relative to the design with

purely radial tubes. Another manifestation of this type

of transition was observed in the optimization of tube

layouts without loops: see the lowest curve in Fig. 3,

where for NP 6 the lowest f value belongs to trees with-

out loops and one level of pairing. When N > 14, the tree

with the lowest f values has two levels of pairing.
4. Two loop sizes

Are the structures with loops always inferior to struc-

tures without loops? If so, is the inferiority of structures

with loops always as severe as we found for the one loop

size in Fig. 3? We pursued these questions by looking at

increasingly more complex structures with loops and

without loops. Fig. 6 shows two optimized structures,

each having two loop sizes. There are three generations

of tubes (Li, Di; i = 0,1,2), where i = 0 indicates the

tubes that touch the center, and i = 2 the tubes that

touch the periphery. The number of ports on the periph-

ery (N) is equal to the number of radial tubes (n0). The

flow model is the same as in the preceding section. The

global constraints continue to be the total duct volume

(V), the disc radius (R), and the total mass flow rate ( _m).
The two-loop configuration has five degrees of free-

dom: n0, L0/R, L1/R, D1/D0 and D2/D1. The global flow

resistance of the structure is represented by Eq. (5),

where the dimensionless resistance f is now given by



� �4 � �4� �4
" #

Fig. 7. The optimized tube lengths for structures with two loop

sizes.

Fig. 6. The optimal layout of tubes with two loop sizes (N = 10,

20).
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f ¼ n0 bL0 þ 1

2

D0

D1

bL1 þ 1

4

D0

D1

D1

D2

bL2
� bL0 þ 2

D1

D0

� �2bL1 þ 4
D1

D0

� �2 D2

D1

� �2bL2
" #2

ð5Þ

with ðbL0; bL1; bL2Þ ¼ ðL0; L1; L2Þ=R. The derivation of Eq.
(5) follows the method of Ref. [11]. The minimization

of f with respect to the diameter ratios yields (D1/

D0)opt = 2
�1/3 and (D2/D1)opt = 1. This means that the

loop that touches the rim is composed of tubes of the

same size. The optimal two-loop configuration consists

of two identical trees with one level of pairing, which

are connected to the same N ports on the rim, and which

are offset relative to each other by an angle 2p/N. The
minimization of f with respect to bL0 and bL1 was per-
formed numerically, and the results are presented in
Fig. 7. Optimized tube lengths were found only for

NP 10. The length of the radial tubes increases notice-

ably as N increases. The length of the intermediate-level

tubes ðbL1;optÞ becomes insensitive to changes in N when

N is greater than approximately 15. The optimized lay-

outs for N = 10 and N = 20 have been drawn to scale

in Fig. 6.

The minimized overall flow resistance that corre-

sponds to Figs. 6 and 7 is reported as the curve labeled

‘‘two loop sizes’’ in Fig. 3. This curve shows a �transi-
tion� at N = 10, below which the optimized flow struc-

tures have one loop size, radial tubes, or trees with

one level of pairing. When N = 10, the f value doubles

in size as the structure changes from the radial pattern

to the one with two loop sizes. Furthermore, when

N = 10 the f value increases by a factor of 1.2 if the

optimized one-loop configuration is replaced by the

optimized two-loop design.

To summarize, the addition of loops to the flow

structure causes jumps in the overall flow resistance.

This behavior matches what we found in Section 3,

where the comparison was between radial tube patterns

and designs with only one loop size.
5. One loop size, no branching levels

There is an even simpler class of flows that connect a

circle with its center, in such a way that the loops are

available on �stand-by�, in case of accidental loss of flow
through one radial duct. The main features of this class

are shown in Fig. 8. Radial tubes connect the center with

N points on the circle. In addition, there are ducts that

connect each pair of adjacent points on the circle. Be-

cause of symmetry, these peripheral ducts carry no flow,

and all the flow between the circle and the center occurs



Fig. 8. Structures with one loop size, radial and peripheral

tubes, and no branching levels.
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through the radial ducts. In this case, the structures of

Fig. 8 are represented by the purely radial designs with

N radial ducts and N points on the circle, the global per-

formance of which is presented in Fig. 3.

The designs of Fig. 8 are interesting and useful for

another reason, which calls for the existence of loops.

If one of the radial tubes is cut off, then the N points

on the circle continue to be served by the flow network.

This �survival� capability is not offered by the radial flow
patterns.

Consider the simplest member of the class of Fig. 8,

namely the case N = 3. The three peripheral points con-

tinue to be connected under two accident scenarios: loss

of flow through one radial tube, and loss of flow through

two radial tubes. The design lessons taught by this class

are new relative to what we learned so far from networks

with loops. They are about the continuation of perform-
ance in the wake of the loss of one or more ducts. For

the structure with N = 3, there are three levels of per-

formance, in descending order:

(i) No interruption of flow through the radial tubes.

(ii) One radial tube is cut off. The peripheral tubes that

make up for the damaged tube must have their

diameters sized optimally, so that under this sce-

nario the performance is the highest that it can

be. All the peripheral tubes must have the same

diameter, because it is not known a priori which

radial tube stops functioning.

(iii) Two radial tubes are cut off. Here we have the

same questions and optimization opportunities as

at (ii), but we expect a global performance that is

inferior relative to both (ii) and (i).

Consider case (i) where none of the radial tubes are

interrupted, Fig. 8a. Ducts with arrows indicate flow.

Ducts without arrows have no flow, because of symme-

try. There are only two tube sizes, D0 and D1. Because

the total tube volume is fixed, the smallest global resist-

ance f is attained when all the tube volume is allocated to

the tubes with flow: this base design with only radial

tubes is represented by the point shown for N = 3 on line

C in Fig. 10.

When one radial tube is cut off, Fig. 9a, the flow rates

adjust themselves so that each of the three peripheral

points receives the required flow rate _m0. The dimension-

less global resistance for this configuration is (in accord-

ance with the method of Ref. [11])

f ¼ 3
3

2
þ sin

p
3

� � D0

D1

� �4
" #

1þ 2 sin
p
3

� � D1

D0

� �2
" #2

ð6Þ

where f continues to be defined as in Eq. (2). This func-

tion reaches its minimum (f = 47.98) when D1/D0 =

0.833. The performance of this design is indicated at

N = 3 on curve A in Fig. 10.

What if the D1/D0 ratio is optimized for operations

with one interrupted radial tube (Fig. 9a), but all the

radial tubes function? In this case, the peripheral tubes

have finite-size diameters even though they carry no

flow. The global flow resistance for N = 3 is f = 14.54,

which falls between the f values calculated for Fig. 9a

and the limit where the peripheral tubes are absent. This

intermediate design is represented by the middle curve in

Fig. 10: an undamaged network with loops on standby,

which is designed for optimal operation when damaged.

The three designs illustrated above for N = 3 have

been determined for many other networks with one loop

size and no branching levels. The results are summarized

as curves A, B and C in Fig. 10. The performance of de-

signs with loops (A, B) is inferior to that of designs with-

out loops (C). In relative terms, however, all designs



Fig. 9. The case of Fig. 8a with one and two radial tubes cut

off.

Fig. 10. The robustness of optimized complex flow structures:

loops (A, B) vs. no loops (C), and damage (A) vs. no damage

(B, C).
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operate at comparable levels as the complexity (N)

increases.

The lower graph of Fig. 10 illustrates the robustness

of optimized complex flow structures. Although damage

(fA, fB) decreases performance, the impact of cutting off

one tube is relatively small when the network is complex.

Furthermore, to have loops on standby (undamaged)

means to pay a penalty relative to no loops at all

(fB > fC). When the network is complex this penalty be-

comes minor—it becomes a good investment in the sur-

vival of the flow structure under damage.

The D1/D0 curve in the lower graph of Fig. 10 shows

the optimized ratio of diameters when only one tube is

cut. This ratio is relatively insensitive to changes in com-

plexity. When N becomes large, the loop becomes uni-

form: the diameter of the peripheral tubes approaches

that of the radial tubes.

The more complex the flow structure, the more

numerous the ducts that can be damaged. The first
opportunity to explore this direction is offered by the

structure of Fig. 9b, where two radial tubes are cut off.

Optimization shows that in this case the optimal ratio

of diameters is the same as in Fig. 9a, namely D1/

D0 = 0.833, and that the minimized f value is exactly

twice the f value of Fig. 9a, namely f = 47.98. Greater

damage means decreased performance.

Fig. 11 shows the two ways in which two tubes can be

cut off in the N = 4 structure of Fig. 8. The optimized de-

signs are reported in Table 1 along with the designs with

one and three cut tubes. The table also shows the design

optimized to operate with one missing tube, but when

the tube is present. Once again, the greater the damage

the lower the performance level.

Another interesting aspect is the great difference be-

tween the performance of the designs of Fig. 11a and

Fig. 11b. Both designs have two tubes missing. Perform-

ance is superior when one damaged tube acts as counter-

weight to the other (Fig. 11a). We may say that a

relatively high level of performance is maintained when

the damage is distributed more uniformly through the

structure. This conclusion is qualitatively the same as

the �optimal distribution of imperfection� principle of
constructal design, where the flow resistances are distrib-



Fig. 11. The case of Fig. 8b with two radial tubes cut off.

Table 1

Optimized networks with N = 4, one loop size, and no

branching levels (Fig. 8b)

Radial tubes missing fmin (D1/D0)opt

0 16.35 0.85

1 45.24 0.85

2 (Fig. 11a) 54.09 0.794

2 (Fig. 11b) 76.49 0.891

3 152.98 0.891
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uted in space such that the global performance is

maximized.
Fig. 12. Network with four central tubes and one level of

branching: (a) no loops; (b) one loop size.
6. One loop size, one branching level

The design of loops into more complex structures

reinforces the conclusions of the preceding section. Con-

sider first the tree-shaped network shown in Fig. 12a:
four central tubes, eight peripheral ports, and one

branching level. Loopless architectures of this type have

been optimized in [11], which showed that the optimal

design in Fig. 12a is characterized by the tube lengths

L0 = 0.425R and L1 = 0.629R. The optimal D1/D0 and

f values are listed in the top row of Table 2.

Loops of one size are created by connecting each pair

of adjacent peripheral ports, as shown in Fig. 12b. There

are three tube sizes, and the allocation of tube volume is

characterized by the ratios D1/D0 and D2/D1. When none

of the tubes is missing, symmetry dictates zero flow

through the peripheral tubes. The latter are present be-

cause they are needed in case one or more of the inner

tubes is cut off.

Figs. 13a and b show the two ways in which one of

the inner tubes is removed. The f values for these two

cases are listed in Table 2: it is relatively unimportant

which tube is cut off, the one that reaches the center,

or the one that reaches the periphery. A slight advantage



Table 2

Optimized networks with one loop size and one branching level

(Figs. 12 and 13)

Tubes missing fmin (D1/D0)opt (D2/D1)opt

0 (no loops, Fig. 12a) 7.213 2�1/3

0 (Figs. 13a,b, uncut) 14.35 2�1/3 1.018

1 (Fig. 13a) 36.59 2�1/3 1.018

1 (Fig. 13b) 36.61 2�1/3 1.018

Fig. 13. Two ways to cut one tube from the design of Fig. 12b.

Fig. 14. The effect of tube damage on the performance of

designs with one loop size and one branching level.
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goes to the design of Fig. 13a, suggesting that damage

has lesser impact when it occurs near the periphery, in

the tree canopy, not near the trunk.

Table 2 also shows the performance of the designs of

Figs. 13a and b when all the tubes are intact (as in Fig.

12b). Overall, the message of the one-loop-size networks

summarized in Table 2 is similar to that of Table 1.

Optimized complex structures are robust. Loops are
needed in order to maintain global performance when

the structure experiences local damage.

The optimization of architectures with one loop size

and one branching level, which in Figs. 12 and 13 was

illustrated for N = 8, was repeated for many other cases

of this type. The results are summarized in Fig. 14. Be-

cause there is little difference in the flow resistance ( f )

between cutting one peripheral branch (Fig. 13a) and

cutting a central duct (Fig. 13b), in the upper frame of

Fig. 14 (curve A) we plotted only the f values resulting

when one peripheral branch is cut off. The lower frame

of Fig. 14 reports the optimal tube size ratio D2/D1,

which is close to 1. Fig. 14 also shows that the relative

performance ratios fA/fC and fB/fC decrease toward 1

as N increases, indicating robustness as complexity in-

creases. Fig. 14 is qualitatively the same as Fig. 10.

The effect of tube damage loses its impact, and can be

tolerated when the network is not only complex but also

optimized.
7. Concluding remarks

In this paper we examined the effect of using loops in

tree-shaped networks for distribution and collection of
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fluid over an area. Networks with loops and without

loops were optimized and compared on the same basis:

the same overall size of the spanned territory, and the

same total duct volume.

Networks with loops offer a great advantage: in case

of accidental damage in one of the links of smallest

scales the surviving arc of the loop assures the continuity

of flow to and from the elemental area covered by the

loop. Because of this feature, the network continues its

function, and, in spite of the damage, the network regis-

ters only a small drop in global performance (Fig. 10).

The disadvantage of trees with loops is that in the ab-

sence of accidental damage their performance is inferior

to that of trees without loops. This feature was docu-

mented in several cases with increasing complexity (Figs.

2–6).

A general observation concerning Fig. 3 is that each

curve represents the �envelope� above which lies the

�cloud� of larger f values of the infinite number of non-
optimal designs (non-equilibrium configurations) that

have the same types and numbers of geometric features

[14]. For example, the ‘‘two loop sizes’’ curve is the bot-

tom lining of the cloud filled by the (f,N) points repre-

senting the non-optimal structures with two loop sizes.

The current progress on tree-shaped flow architec-

tures and their technological applications is reviewed

in two new books [20,21]. In particular, the minimiza-

tion of flow resistance does not always lead to the same

architecture as the minimization of pumping power, as

shown in Ref. [22].
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